
Extended Combinatorial
Testing

By

Edmond La Chance

Director: Sylvain Hallé

Extended Combinatorial Testing 1

With Graph Algorithms and Apache Spark

About me

I was born in Montreal, and I now live in Chicoutimi.

I'm a fan of RPG games like D&D, Pathfinder and Call of
Cthulhu.

I used to be a very active foosball player... I've been playing less
for the last 2 years, but I hope to compete again one day!

Extended Combinatorial Testing 2

Introduction

Extended Combinatorial Testing 3

THE CISQ report

CISQ estimates in their report that in 2018, the total
cost related to software bugs is $1.53 trillion, or 7% of
the US GDP in 2018.

CISQ estimates, with their 2020 report, that this cost
has increased by 26% to $2.08 trillion.

Extended Combinatorial Testing 4

Catégorie %

Losses from
software failures

37.46

Legacy system
problems

21.42

Technical debt 18.22

Finding/fixing
defects

16.87

Troubled/canceled
projects

6.01

The case
of the
Therac-25

Extended Combinatorial Testing 5

Problem statement

Why do we do all this work to find bugs, and make our software more
reliable, and predictable?

Bugs and unexpected behavior can be catastrophic to people's safety.

Software problems have a very high cost to the economy. If we save on this,
we can invest money elsewhere.

Extended Combinatorial Testing 6

How do we prevent these
problems?

Extended Combinatorial Testing 7

Techniques of Software Verification

1. Manual Code Inspection

2. Static analysis, Runtime analysis

• Code Smells

• Model Checking

• Runtime Monitoring

3. Test case generation

• Black-box Fuzzing

• Concolic Testing

• Combinatorial tests

Extended Combinatorial Testing 8

Godefroid, P. (2020). Fuzzing: Hack, art, and science. Commun.
ACM, 63(2), 70–76.

Combinatorial testing

Extended Combinatorial Testing 9

t-way testing
• A sequence of t=2 tests is a sequence

in which each parameter-value pair
appears at least once.

• We can call these combinations of
values "combos".

• Empirical studies by Kuhn et al.
have shown that t-way tests are very
effective than exhaustive tests in
finding bugs.

Extended Combinatorial Testing 10

Un SUT avec 6 paramètres
et deux contraintes
Source: Manuel de PICT

http://www.amibugshare.com/pict/help.html

Empirical studies on t-way testing

Extended Combinatorial Testing 11

Wallace and Kuhn (2001) study 15 years of bug reports from embedded medical
applications.

t=2 finds 97% of the bugs, t=3 finds 99% and t=4 100%.

Kuhn and Reilly (2002) study Mozilla Web Browser and Apache Web Server bug reports.
t=2 finds 76% of the bugs, t=3 finds 95% of the bugs, then t=4, t=5 and t=6 further increase the

performance, up to 100% of the bugs found with t=6

A study by Kuhn et al. (2004) of software used by NASA.

t=2 and t=3 find the majority of problems, and t=4 through t=6 seem to provide pseudoexhaustive
coverage.

Initial observations

Extended Combinatorial Testing 12

Initial observations

1. Useful tools to generate combinatorial tests already exist (PICT, ACTS,
Jenny etc). However, these tools do not necessarily have all the desired
features. For example, the support for existential constraints is very basic.

2. Existing tools have a single-threaded design, which can lead to scalability
problems. No existing tool works with distributed computing.

3. A large-scale study to compare these solutions, in terms of quality, time,
and how they handle the constraints is missing.

Extended Combinatorial Testing 13

Contributions of this thesis

1. Generalization of t-way testing to Φ-way testing.

2. A reduction to Φ-way testing to Graph Coloring and Hypergraph Vertex
Covering

3. Implementation and design of distributed algorithms to solve Φ-way
testing or t-way testing problems.

4. Local experimentation, and experimentation with Compute Canada to
produce our distributed results.

Extended Combinatorial Testing 14

Combinatorial tests
generation

Extended Combinatorial Testing 15

Taxonomy of methods

Extended Combinatorial Testing 16

Extended Combinatorial Testing 17

IPOG Algorithm

Source:

Lei, Yu, et al. "IPOG: A

general strategy for t-

way software

testing." 14th Annual

IEEE International

Conference and

Workshops on the

Engineering of

Computer-Based

Systems (ECBS'07).

IEEE, 2007.

Extended Combinatorial Testing 18

IPOG Algorithm

Source:

Lei, Yu, et al. "IPOG: A

general strategy for t-

way software

testing." 14th Annual

IEEE International

Conference and

Workshops on the

Engineering of

Computer-Based

Systems (ECBS'07).

IEEE, 2007.

Apache Spark

Extended Combinatorial Testing 19

Apache Spark

Extended Combinatorial Testing 20

Apache Spark is a framework for programming clusters (a cluster of

servers). It is mostly used for Big Data processing.

When programming with Spark, we describe transformations to be done

on a collection of data that is partitioned on several computers.

Data partitions exist on computers that are workers. These computers

communicate with each other with MapReduce type aggregations. The

pilot program takes care of orchestrating all the computation and giving

work to the workers.

Organisation of the cluster
Extended Combinatorial Testing

21

Driver Program

Worker 1

Partition 1

Partition 2

Broadcast variables

Closure

Partition 0

Partition 3

Broadcast variables

Closure

Worker 2

Vocabulary

RDD: Resilient Distributed Dataset. The RDD is a collection of elements
or objects that is distributed over the cluster. A RDD is divided into
partitions.

Pattern: a transformation performed on a RDD. The main
transformations used are flatMap et reduceByKey.

Driver: The program that orchestrates the distributed computing.

Worker: The worker is a process that performs the work required by the
RDD transformations (flatMap, reduceByKey etc).

Extended Combinatorial Testing 22

Contribution I:
Generalization of t-way
testing to Φ-way testing

Extended Combinatorial Testing 23

A generalization of t-way testing

• Our generalization called Φ-way (Phi-way) testing replaces the notion of
interaction strength (t) on a system with an arbitrary set of boolean
conditions on the parameter-values. We call this set Φ. These boolean
conditions can have operators like ! < > =

• Example: A system with three parameters a,b,c; each with two values 0 or
1

Extended Combinatorial Testing 24

Universal and existential constraints

A universal constraint is a constraint that applies to all tests in the test
suite.

An existential constraint is a constraint that applies only to a single test.

Extended Combinatorial Testing 25

Universal constraints

Most existing tools (ACTS, PICT, Jenny) support universal constraints.
When finalizing a test, we check if it respects all the universal constraints.

Extended Combinatorial Testing 26

Limits of universal constraints

Universal constraints are not able to handle every scenario. For example, one
cannot write a universal constraint that requires parameters of the same
clause to have different values.

However, in Φ-way testing, we can express this kind of situation without
problems:

Extended Combinatorial Testing 27

Existential constraints

Most of the tools mentioned earlier have basic support for existential constraints.
They support a "seeding" mode, a limited form of existential constraints that
allows to extend an existing test suite.

However, these tools cannot express a situation as equivalence classes. Universal
constraints do not work either.

Exemple:

a = {0,..,9} b et c = {0,1}

We know that when a < 5 and b = 0, the software will have the same behavior.

☛ So we can write two clauses:

Extended Combinatorial Testing 28

Contribution II:
Reductions to Graph Coloring
and Hypergraph Vertex
Covering

Extended Combinatorial Testing 29

Reduction to Graph Coloring

The reduction in graph coloring allows, once the graph is colored, to obtain
the test suite.

If we find the chromatic number of the graph, we can find the optimal test
suite. However, finding the chromatic number is NP-hard.

The reduction of Φ-way clauses in graph coloring supports existential
constraints (but not universal constraints).

Extended Combinatorial Testing 30

Informally,

Graph Construction Phase
• Each clause becomes a graph vertex

• We put an edge between two clauses that cannot be true at the same time

Graph Coloring Phase

• We color the graph with any graph coloring algorithm

• We create a test from each color; the test becomes the conjunction of the clauses of
the same color

Extended Combinatorial Testing 31

Example

Extended Combinatorial Testing 32

Reduction to Hypergraph Vertex
Covering
The reduction to Hypergraph Vertex Covering allows the use of a highly
efficient greedy algorithm (Feige, 1998)

This reduction supports universal and existential constraints.

Extended Combinatorial Testing 33

Informally,

Hypergraph Construction Phase

• Each clause becomes an edge

• An edge visits all the vertices with which a conjunction is possible

• We eliminate the vertices which do not satisfy the universal constraints

Hypergraph Covering Phase
• We apply the greedy algorithm. We find the set of vertices that cover all the

hyperedges

• Each vertex becomes a test

Extended Combinatorial Testing 34

Example

Extended Combinatorial Testing 35

Arête 1 Arête 2 Arête 3

The chosen nodes become

the test suite

Contribution III:
Distributed Algorithms

Extended Combinatorial Testing 36

Generation of Φ-way clauses + union

Extended Combinatorial Testing 37

Distributed Graph
Coloring

With Apache Spark

Extended Combinatorial Testing 38

Building the graph

Extended Combinatorial Testing 39

Extended Combinatorial Testing 40

Extended Combinatorial Testing 41

Knights & Peasants
algorithm

Extended Combinatorial Testing 42

Distributed Hypergraph
Vertex Covering

With Apache Spark

Extended Combinatorial Testing 43

An overview

Extended Combinatorial Testing 44

The Greedy Picker heuristic
Greedy picker tries to
choose tests that are
all different from each
other. To do this, we
calculate a percentage
of similarity between
each test.

We select a new test
among the candidates
only if this test is 60%
different from all the
others.

Extended Combinatorial Testing 45

Example

Extended Combinatorial Testing 46

Example

Extended Combinatorial Testing 47

Distributed In-
Parameter-Order

Extended Combinatorial Testing 48

Complete process

Extended Combinatorial Testing 49

Complete process

Extended Combinatorial Testing 50

Contribution IV:
Experimental Evaluation

Extended Combinatorial Testing 51

The TSPARK tool

Extended Combinatorial Testing 52

TSPARK

Extended Combinatorial Testing 53

Source: https://line-count.herokuapp.com/mitchi/TSPARK

Compute Canada Cluster

Extended Combinatorial Testing 54

The Graham Cluster
We used the Graham cluster for our initial results. On
this cluster, we requested 16 machines in partial resource
utilization, which gave us 128 cores and 1 terabyte of
RAM.

Extended Combinatorial Testing 55

https://docs.computecanada.ca/wiki/Graham

Problem sizes
Problem Number of vertices Size of

graph*

N=8 131 072 1g**

N=9 589 824 21g

N=10 1 966 080 241g

N=11 5 406 720 1.8t

N=12 12 976 128 10t

N=13 28 114 944 49t

N=14 56 229 888 197t

N=15 105 431 040 694t

N=16 187 432 960 2.19pb

N=17 318 636 032 6.34pb

Extended Combinatorial Testing 56

* Using bit arrays and half of the matrix

**The formula:

(((8 choose 7) * 4^7) squared) /1000 /1000
/1000 /8 /2

Graham results

Instance PICT ACTS Jenny D-
Hypergraph

Order
Coloring

D-IPOG-
Coloring

D-IPOG-
Hypergrap
h

K&P
Coloring

N=8 24391 16384 25659 23255 28593 26152 25249 28811

N=9 35351 39296 36293 33462 42198 38938 35825 Time limit

N=10 45320 51636 46355 41387 56153 50242 45595 Time limit

N=11 55143 58952 55892 49059 Time limit 61079 54904 Time limit

N=12 64555 65882 64844 Time limit Time limit 71134 63726 Time limit

N=13 73588 72941 Error Time limit Time limit 80463 Time limit Time limit

N=14 Time Limit 81412 Error Time limit Time limit 89121 Time limit Time limit

N=15 Time Limit 88885 Error Time limit Time limit 97190 Time limit Time limit

N=16 Time Limit 95700 Error Time limit Time limit 104752 Time limit Time limit

N=17 Time Limit 102430 Error Time limit Time limit 111833 Time limit Time limit

Extended Combinatorial Testing 57

Graham results

Instance PICT ACTS Jenny D-
Hypergraph

Order
Coloring

D-IPOG-
Coloring

D-IPOG-
Hypergra
ph

K&P
Coloring

N=8 112s 0s 58s 47s 96s 34s 231s 7590s

N=9 662s 3s 341s 336s 4472s 167s 1501s Time limit

N=10 2680s 6s 1494s 3322s 68937s 524s 7454s Time limit

N=11 8560s 10s 5107s 93294s Time limit 1343s 17135s Time limit

N=12 23393s 16s 13968s Time limit Time limit 3139s 95176s Time limit

N=13 56586s 33s Error Time limit Time limit 6597s Time limit Time limit

N=14 Time Limit 63s Error Time limit Time limit 12796s Time limit Time limit

N=15 Time Limit 131s Error Time limit Time limit 22971s Time limit Time limit

N=16 Time Limit 280s Error Time limit Time limit 39370s Time limit Time limit

N=17 Time Limit 483s Error Time limit Time limit 64578s Time limit Time limit

Extended Combinatorial Testing 58

Conclusion

Extended Combinatorial Testing 59

Strengths of this approach

60

Φ-way testing is a richer system for expressing the conditions of a system to be covered. Its

comprehensive support for existential constraints has no equivalent in existing tools. The

Hypergraph algorithm obtains excellent solutions all the time, if the problem structure is

suitable.

Graph coloring performs well and gives good solutions when the graph is sparse; this is

interesting in many t-way testing situations.

All the proposed solutions will become more interesting in the future, with technological

advances like:

• A faster network

• Increasing the amount of RAM (e.g. 512GB DDR5)

• Increasing the number of cores in the machines

Drawbacks of this approach

Extended Combinatorial Testing 61

Distributed iterations with Apache Spark+Cluster are quite slow!

At the moment, the "have or rent a computer cluster" approach is quite expensive.

Future work

Extended Combinatorial Testing 62

• Implementation of the algorithms described in the thesis on a video card. Newer video

cards, such as the RTX 3090 have 10 000 cores and can be programmed using CUDA.

• We can also do multi-GPU on the same machine, for more power. GPU programming

allows to have a lot of muscle, with less latency than a cluster.

• Implementation of the algorithms with C++. This would allow to take advantage of

SIMD operations in some key places.

• Addition of new algorithms for TSPARK

Thank you

Extended Combinatorial Testing 63

Annex

Extended Combinatorial Testing 64

Recent developments

Extended Combinatorial Testing 65

The Niagara Cluster

Extended Combinatorial Testing 66

For our results on Niagara, we used 20 computers, giving us a

total of 800 cores, and 4 terabytes of RAM.

The Database Graph Construction
algorithm

Extended Combinatorial Testing 67

• A new algorithm for building the graph. It is based on the following observation: One can directly construct

the set of elements that are non-compatible with a clause by constructing for each parameter, the set of non-

valids. The final set of non-valids, the edges, is the union of all the sub-sets of non-valids.

• This algorithm builds the graph much faster by doing set manipulations with optimized data structures (Bitset

or RoaringBitmap)

• Faster state update in D-IPOG and D-Hypergraph

• Very few branches in the algorithm. Bitwise operations without branching.

• More optimal for Spark: Replaces MapReduce with a simple flatMap transformation

Hypergraph results

Extended Combinatorial Testing 68

Instance Hypergraph-
Graham

Hypergraph-
Niagara

Speedup

N=10 3322s 485s 6.84x

N=11 93294s 5540s 16.84x

K&P results on sparse graphs

Extended Combinatorial Testing 69

Instance Numb
er of
vertice
s

Size of
graph*

Number
of tests
found

Time % of
iterations**

Size&Ti
me for
ACTS

Differen
ce %

N=100 19 800 0.02g 14 58s 3.681% 16 & 0s 13%

N=200 79 600 0.39g 15 116s 1.90% 18 & 0s 17%

N=400 319
200

6.36g 17 253s 0.972% 20 & 0s 15%

N=800 1 278
400

102g 18 747s 0.50% 22 &
1.6s

19%

N=1600 5 116
800

1.636t 19 3358s 0.288% 24 &
5.73s

21%

N=3200 20 473
600

26t 21 23278s 0.15% 26 &
34s

20%

• We use here the Niagara
cluster, with the
RoaringBitmaps to represent
the graph pieces

• t=2, v=2 on all problems
• Size of the chunks = 200 000

vertices

• * Size computed with the
triangle of the matrix + Bitsets

• ** The % of iterations is
computed by counting the
number of iterations
distributed, divided by the
number of vertices

• *** Quality difference between
ACTS and K&P Coloring

D-IPOG improvements

Extended Combinatorial Testing 70

Instance ACTS IPOG D-IPOG-C D-IPOG-C new Speedup

N=8 0s 34s 44s 0.75x

N=9 3s 167s 112s 1.49x

N=10 6s 524s 282s 1.85x

N=11 10s 1343s 614s 2.18x

N=12 16s 3139s 1217s 2.57x

N=13 33s 6597s 1744s 3.78x

N=14 63s 12796s 3489s 3.66x

N=15 131s 22971s 4830s 4.75x

N=16 280s 39370s 9389s 4.19x

N=17 483s 64578s 16646s 3.87x

Bitset

Extended Combinatorial Testing 71

RoaringBitmap

Extended Combinatorial Testing 72

Source:

Lemire, D., Kaser, O., Kurz, N., Deri, L.,

O’Hara, C., Saint-Jacques, F. and Ssi-

Yan-Kai,

G. (2018). Roaring bitmaps:

Implementation of an optimized

software library. Software:

Practice and Experience, 48(4), 867–

895.

